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The Ventsel'-Freidlin probability estimates for small random perturbations of 
dynamical systems are used to generalize and justify the Onsager-Machlup 
irreversible thermodynamic variational description of Gaussian statistical distri- 
butions in the limit where Boltzmann's constant tends to zero for non-Gaussian 
diffusion processes. A Hamiltonian formulation is used to determine the maxi- 
mum likelihood paths for the growth and decay of nonequilibrium fluctuations, 
in the same limit, subject to the imposed constraints. The paths of maximum 
likelihood manifest a symmetry in past and future and are the stationary 
conditions of the constrained thermodynamic variational principle of least 
dissipation of energy. The power balance equations supply the required con- 
straints and the most likely path for the growth of a fluctuation is characterized 
by a negative entropy production. The entropy plays the role of the quasipoten- 
tial of Ventsel' and Freidlin and exit from a bounded domain containing a 
deterministically stable steady state is made at that state on the boundary with 
maximum entropy. 

KEY WORDS: Thermodynamic variational principles; maximum likeli- 
hood paths; stochastic exit; thermodynamic evolutionary criteria. 

1. INTRODUCTION 

The pioneering work of Onsager and Machlup (1) has led to the introduc- 
tion of thermodynamic variational expressions into the statistical descrip- 
tion of linear irreversible thermodynamical processes under the influence of 
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random thermal fluctuations. The Onsager and Machlup analysis was 
restricted to the important, but special, case of Gaussian nonequilibrium 
fluctuations which are impervious to the mathematical problems of nonlin- 
ear processes. (2) 

More recently, Ventsel' and Freidlin (3) have considered the behavior 
of dynamical systems under the influence of small random perturbations of 
the white noise type. They studied the motion of a particle diffusing against 
the flow in an analogous way that the WKB aproximation is applied to the 
Schr6dinger equation in the classical limit where Planck's constant h$0. 
They showed that an estimate of the probability for a trajectory of the 
perturbed motion not to deviate from a smooth path, for small noise 
intensities, has the form exp[ - �89  where 0(4) is identical to the 
Onsager-Machlup (OM) functional which is independent of the small, 
positive parameter k that is a measure of the noise intensity. In irreversible 
thermodynamics, k is identified as Boltzmann's constant. 

The asymptotic behavior of the solutions of diffusion equations has 
also been studied by Friedmann. (4) Ludwig (s) applied a ray method to the 
asymptotic solution of the Fokker-Planck equation and interpreted the 
rays as paths of maximum likelihood in the spirit of Ventsel' and Freidlin. 
However, Ludwig did not go into the detailed differences between the 
classical mechanical variational formulation and the Hamiltonian type of 
formulation that is required when the equations of motion are of first rather 
than second order in time. 

The probability estimates derived by Ventsel' and Freidlin have been 
applied to the problem of reflection on hitting the boundary of a domain 
enclosing a stable stationary state by Anderson and Orey, (6) Matkowsky 
and Schuss (7) used singular perturbation techniques to predict asymptoti- 
cally the mean exit time. Williams, (8) again using singular perturbation 
methods, constructed the probability densities of exit positions in the case 
where there is no unique point on the boundary which minimizes the OM 
functional. 

Equipped with the Ventsel'-Friedlin probability estimates we general- 
ize and justify the Onsager-Machlup irreversible thermodynamic varia- 
tional description of linear irreversible processes. This also applies to the 
further developments of the Onsager-Machlup formulation made by one of 
us. O) The generalization to nonlinear irreversible processes can be made 
only in the "thermodynamic" limit kS0. Morover, it will be appreciated that 
the domain of validity of irreversible thermodynamics is restricted to this 
limit; any corrections to the Ventsel'-Freidlin probability estimate, in terms 
of the OM functional, explicitly takes into account the nature of the 
random thermal fluctuations and requires a stochastic analysis which is 
beyond the realm of irreversible thermodynamics. This fact was camou- 
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flaged in the Onsager-Machlup analysis of Gaussian nonequilibrium fluc- 
tuations since their properties (e.g., stability) are analogous to those of the 
unperturbed system. For instance, qualitative differences regarding the 
nature of the critical point of nonequilibrium phase transitions occur 
between the macroscopic Landau-Ginsburg theory and a stochastic analy- 
sis containing the effects of random thermal fluctuations. In the critical 
region, the importance of random thermal fluctuations becomes predomi- 
nant and the Landau-Ginsberg theory arises, like irreversible thermody- 
namics, in the thermodynamic limit k$O. (1~ 

2. IRREVERSIBLE PROCESSES IN THE PRESENCE OF SMALL 
RANDOM THERMAL FLUCTUATIONS 

The omnipresence of random thermal fluctuations in irreversible pro- 
cesses makes it necessary to modify the deterministic criteria of stability. 
Suppose that an irreversible thermodynamic process in R n is described by 
the set of rate equations 

= b ( x , ) ,  X,=o  = x 0  (1 )  

in which the origin O of the generalized coordinates x is a stable stationary 
state. Let f] be any bounded region containing the stationary state and Of~ 
be the boundary of a. Then any trajectory beginning at x0 @ f~ will 
asymptotically approach the stationary state without ever leaving ~. More- 
over, denoting p as the unit outer normal vector to 0~ at y, the drift vector 
b satisfies the inequality 

b ( y ) .  ~(y) < 0, y ~ ~a (2) 

The presence of random thermal fluctuations gives rise to a diffusion 
"against the flow." Random thermal fluctuations are accounted for by 
adding a statistically defined term w t to the right-hand side of (1), viz., 

S~? = b ( x ? )  + ( 2 k ) ' / 2 , , ( x , ~ ) w , ,  Xt=o = Xo (3) 

where w t is a continuous process which is only an approximation to white 
noise. In contrast to the solution of the deterministic equation (1), the 
trajectories of the perturbed system (3) wilt, sooner or later, leave any 
bounded domain containing the deterministically stable stationary state O 
with probability 1. The strength of the random thermal fluctuations is 
measured by Boltzmann's constant k and o is related to the diffusion 
matrix (D 'y) by (D y) = o ( x ) a  + (x) ,  where a + is the transpose of the matrix 
o. We shall be concerned with the behavior of the process xt ~ as k,l,0. 

Since w t is a continuous process, the solution of (3) is not a Markov 
process but, under certain conditions, (11) it converges to one in mean 
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square as q m -  limfrwt dt = We, where W r is an n-dimensional standard 
Brownian motion. This implies that x[  is a solution of the Fisk- 
Stratonovich stochastic differential equation(~2) : 

(5;) - d x [  = b(x•)dt + (2k)l/2o(x?) o dW, (4) 

where the circle denotes symmetric (forward) multiplication: 

o(x?)  o dW, ~- o(xtk)dWt Ji- l do(x?)dWt = o(xtk)dW, -1- ( l k)l/2oOx(ldt 

(5) 
Upon introducing (5) into (4), we obtain the It6 stochastic differential 
equation(13) : 

( I )  -dx[  = b k(Xtk ) dt + (2k)'/2o (xt k) dW, (6) 

where 

and 

= b(x?)  + kt ; (x?)  (7) 

~i=  [det(DV )]'/2aj(DiJ/[ det(D ij ) ],/2) (s) 

The solution of Eq. (6) is a Markov process with an infinitesimal generator 
G ~ = kA + (b(x), V), where A is the Laplace-Beltrami operator correspond- 
ing to the metric Do.(x)dxidx:, (Do.) is the matrix inverse to (DiJ), and ~7 is 
the Riemannian gradient. In the thermodynamic limit k.l,0, Eq. (6) goes 
over into the macroscopic rate equations (1) and consequently, xt k can be 
viewed as the result of small random thermal fluctuations imposed upon 
otherwise macroscopic rate equations. 

Albeit there is an overwhelming probability for the system to evolve in 
time to within any small neighborhood of the deterministically stable 
stationary state, where it will spend an unlimited amount of time, there will, 
nevertheless, be a finite probability for motion, in one form or another, 
against the flow, no matter how small Boltzmann's constant may be. (3) 
Sooner or later, the system will make its exit from any bounded domain 
containing O. We now address ourselves to the problem of determining 
thermodynamic criteria for the paths of maximum likelihood of a fluctua- 
tion subject to the imposed constraints in the limit kS0. 

3. BASIC PROBABILITY ESTIMATES 

Following the general development of Ventsel' and Freidlin, (3~ we 
determine the probability that the perturbed trajectory x f  does not deviate 
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by more than 3 from a smooth curve q~t. We do so by enclosing q't in a 6 
tube and ask for the probability that dT(q,,x k) = max0<s<Td(G,x f )<  6 
where d ( ' , ' )  is the Riemannian distance. 

With this goal in mind, we compare the actual diffusion process yk, 
with dr!ft bk(yk), to a hypothetical diffusion process x k which is driven by 
a drift q't that it would have were it to follow the smooth trajectory q,t in the 
absence of thermal fluctuations. The hypothetical diffusion process is then 
governed by the stochastic equation: 

(9) 

while the actual diffusion process is given by 

Ykr= xo+ s (2k) l /2s  (xtk)dm t (10) 

Writing 

xk= ztk + ~r and xtk= ztk + dpt ( l l )  

the pair of stochastic equations (9) and (10) are transformed into 

zt~= zo+ks  +eo, ld t+(2k ) ' / 2 s  ~ +eot)dW , (12) 

and 

z'~,~= Zo + s  bk(Z, k + eo,) - *t] dt+ (2k) ' /Es  (Z, k + q~t)dW t (13) 

respectively, where Zo = xo-COo. The actual diffusion process Z~ is, in a 
certain sense, close to the hypothetical diffusion process z~ and its corre- 
sponding probability measure/~ is close to the probability measure t~ of the 
hypothetical diffusion process. The two diffusion processes possess the 
same sample functions but are considered as distinct stochastic processes 
with respect to their different probability measures. 

Since the local variance matrices of the two measures are equal on the 
entire interval [0, T] the probability measure 17 is absolutely continuous 
with respect to the probability measure bt so that the Radon-Nikodym 
derivative 

dg (z.) = p(z. ) (14) 
+ 

exits where O is the probability measure density given by the Girsanov 
formula(14) : 

T k JoUB2(z? + O ( z . ) = e x p [ s  fi(z t +eot)dWt- �89 ~t)dt] (15) 
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fl being proportional to the difference in the two drifts: 

fl(z• + cot) = [ (2k)l/2o(z[ + *t) ]-1[ b(z~ + q)t) - q't I (16) 

since the common term kt~(z[ + q)t) cancels out. 
The probability that dr(z "~) < 8 is thus given by 

ag 
Pzo( dT(Zk) < 8 } = Ezo(X(dT(~k)<,~}--~ } (17) 

where X is the indicator function and E~0, is the conditional expectation 
with respect to the probability measure tt. Using the Chebyshev inequality 
to obtain an upper bound on the It6 stochastic integral in (15) and 
estimating the upper bound about the path  q)t we obtain the inequality (3) 

Pxo{dT(q),x~) < 6} > e x p ( - ( 2 k ) - l [ O r ( q ) )  + hi}  (18) 

for any h > 0 where k < min(h,6)/C(T,K) and C(T ,K)  is a constant 
depending on T, K = Or(q) ) + T and positive parameters that place bounds 
on the magnitudes of the drift vector and the local variance matrix, 
Inequality (18) stresses the fundamental role of the additive OM func- 
tional (1) 

1 T . or(q)) = ~fo IIq),- b(q)t)ll 2de (19) 

as far as probabilistic estimates are concerned in the kS0 limit. In fact, the 
probability that x [  E A, where A is a Borel set, is given by 

lim2klogPxo{Xt ~ C A )  = -inf(Or(q)):q)o = Xo,q)r~A} (20) 
kS0 

Similar argumentation leads to the inequality (3'4) 

Pxo{.c~ < T) > Pxo( dr(q),xk) < 8) >>- exp(-(2k)-l[Or(Xo,Oa) + h']) 
(21) 

for the probability that the system will make its first exit from f~ at a time 
~-a k < T for any h' > 0, provided k is sufficiently small. The exit time is 
defined as ~-~ = inf{ t : q)l ~ s  and 

Or(Xo, 0s = inf{Or(q)): q)O = XO, q)r ~ ~s (22) 

In the kS0 limit there results 

l im2klogP~ ( ~  < T} -- - min Or (Xo ,y  ) (23) 
k~0 0 t  yES~2 

Furthermore, the transition probability for the process ~ ,  

P(A, r I Xo) = P~o(X k E A) (24) 
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has a density p which in the thermodynamic limit k,l,O is given by (3'4) 

lim 2k log p (x, T I x0) = - Or(xo, x) (25)  
kS0 

Where 

Or(x0, x) = inf{ Or(~) :9 E a, 90 = x0, q'r = x } (26) 

The results of Ventsel' and Freidlin suggest a variational formulation 
in which the paths of maximum likelihood minimize the OM functional 
subject to given endpoint conditions. This has been carried out by Lud- 
wig (s) using a ray method in which s is covered by a family of rays, 
obtained from a Hamiltonian that is associated with an eikonal equation. 
Ludwig's analysis is based on an asymptotic expansion of the Fokker- 
Planck equation in which the eikonal equation arises at order (k-x). This 
method avoided the variational problem of specifying the end-point condi- 
tions: the paths of maximum likelihood which render the OM functional 
stationary satisfy first-, rather than second-, order differential equations so 
that one cannot specify both end points of the transition. Nevertheless, 
implicit in Ludwig's analysis is the criterion that correctly determines the 
paths of maximum likelihood which Onsager and Machlup took for 
granted since their starting point was the phenomenological equations of 
irreversible thermodynamics. In the next section we derive the paths of 
maximum likelihood from a variational principle and discuss the differ- 
ences encountered with variational principles of classical mechanics. 

. VARIATIONAL FORMULATION FOR PATHS OF 
MAXIMUM LIKELIHOOD 

The results of the last section indicate that 

tends to 

const x exp{ - ( 2 k ) - l i n f I  Or(q~): 90 = Xo, ~r ~ A ]} 

in the limit kS0. In the thermodynamic limit, the distribution functions of 
the diffusion process become exceedingly sharp so that means and modes 
coincide. Therefore, in this limit, the paths of maximum likelihood can be 
obtained from the stationary points of the "action" functional 

T2 OT, Tz(dp)= l ~ aij(d~t)(+ti-- bi(d~t)){+J-- bJ(dpt)) (27) 

The integrand of (27) plays the role of a Lagrangian and it is well known 
that the Lagrangian is invariant up to an exact differential. This term may 
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be extracted out by writing (3) 

Dyb j = OiS + Ai (28) 

where S is some scalar potential and A is a vector field. The properties of A 
shall be specified below [cf. Eq. (37)]. Introducing (28) into (27) results in 

OT, T2(~ ) = AT, T2(~ ) -- (S(d~T2) - -  S(~)TI)} (29) 

Introducing (29) into (25), the expression for the transition probability 
density becomes 

lim2klog p(x, T2lxo,T 0 = S ( x ) -  S (xo) -  Ar, r2(Xo,X) (30) k.l.O 
where 

Ar, r2(X0,X) = inf(Or, r~(*):*r, = x0,~r2 = x} + S(x) - S(xo) (31) 

and plays a role analogous to Hamilton's principal function. Expression 
(31) is the kinetic analog of Boltzmann's principle in the thermodynamic 
limit.(]5) 

Since the transition probability satisfies both the forward and back- 
ward Kotmogorov equations, A satisfies the pair of Hamilton-Jacobi 
equations 

0r2A + �89 Y(~),.A + A,)(0jA + Aj) - aZ(x) = 0 (32) 

and 

-0 r ,A  + 1D0(B0 A - A/)(B0jA - A j ) -  q~(x0)= 0 (33) 

which can be derived at order (k-1) in a formal expansion of the solution 
of the Kolmogorov equations in powers of k. The subscript 0 means partial 
differentiation with respect to the initial coordinates of the transition. The 
Hamilton-Jacobi equations (32) and (33) indicate that 

H(x, 0A) = �89 + AE)(OjA 4- A j )  - -  xlt(X) (34) 

has the role of a Hamiltonian with a potential which is the negative of 

�9 (x) = �89 j (35) 

known in statistical thermodynamics as the "generating" function.(~6) 
In addition, the time-dependent Fokker-Planck equation for the in- 

variant probability density must be satisfied to order (k-1) in an asymp- 
totic expansion of the invariant probability density in powers of k. In the 
thermodynamic limit kS0, Boltzmann's principle 

limk log p=(x) = S(x) 4- const (36) 
kS0 

relates the invariant probability density Po~ to the entropy S(x). Thus at 
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order (k-1) we obtain the transversality condition 

viOi S = 0 (37) 

where v ~= DiJAj. Note that the rotational probability current j i  = p ~ v  ~ 
vanishes in isolated systems since rotational motion must be sustained by 
external sources. The transversality condition was also required by Ventsel' 
and Freidlin in the drift decomposition (28). 

The thermodynamic action functional is (17) 

A:r,T:(~) = fT.T2L(fft, ~t) dt (38) 

where L is the thermodynamic Lagrangian 

k(@t ~ , ) = x n . & i & j  "i �89 j (39) ' 2 ~ij't't "rt -- AidPt + 

We may say that the thermodynamic Lagrangian (39) differs from the 
Lagrangian of the OM functional (27) by a gauge transformation. The 
thermodynamic Lagrangian (39) has the appearance of a Lagrangian of a 
charged particle in a scalar potential - , t '  which is acted upon by a vector 
potential - A .  Provided the transversality condition (37) holds, k is invari- 
ant under time reversal since A i ---> - A i under t ~ - t. Defining the dissipa- 
tion function �9 and the rate of working of the external forces II by (9) 

f~ = 1_ I') & i~ j  (40) 
2 ~ / j ' r t  "t't 

H = Aiq,/ (41) 

the thermodynamic Lagrangian can be written in the form of a difference 
between the sum of dissipation functions and the external power, viz., 

k = �9 + ~I" -- [I (42) 

It should be noted that �9 like �9 is a dissipation function with the difference 
that whereas 't' is a function of state, �9 is a function of its rate of change. (1) 
In the analysis of Onsager and Machlup, they are always assumed to be 
numerically equal by virtue of the phenomenological relations. We shall 
now see that their numerical equivalence is the criterion for determining 
paths of maximum likelihood. 

Allowing for both a variable time of transit and variations in the end 
points of transition, the variational principle 

AOTIT2(~)) = m y T T 2 L d t - -  oiam~l i lT ~ = ~ f zT2Ldt-{-  L• - OisAoilrr~ = 0 

(43) 

determines the paths of maximum likelihood for both the growth and decay 
of nonequilibrium fluctuations. The A variation is related to the virtual 6 
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variation by A~ = g0 + +At. Introducing the conjugated generalized mo- 
menta 

'Ti" i = ~i A = ~#,,L = Do.~J + A i (44) 

the Hamiltonian (34) becomes 

H(O,~r) = �89 + hj)(q7" m -I- Am) - -  � 8 9  m (45) 

and so (43) can be written in canonical form as 

AOT, Tz((~) = fTT2[ ( + ' - -  ~,rriH)~,z" i - ((7 i .-[- ~ i H ) ~ / ]  dl  

+ ((~ri - 8,-S)A,/,' - HA/) I~ = 0 (46) 

where the momenta in the integrated part refer to the end points of the 
transition. Since 8q~ i and &r~ are arbitrary virtual variations, we obtain the 
following three conditions: 

(a)  ~ =  O~H = DV(~rj + Aj) 

ir i = -Oi  H = - ( �89 + Ak)(~ / + Aj) 

-( ks + Ak)O:S + Aj)] 
+ DkJ[OiAk( j-OjS)-O,OkS(OjS + Aj)]} 

(B) if atl  : O 
(C) qri = ~iS if A~.ilr2 ,..a,./., i TI =~= 0 

It is apparent that condition (C) satisfies both (A) and (B); it deter- 
mines the absolutely most probable path, q~. This path is the deterministic 
path which is the solution of Eq. (1)~ We have called this path the 
"thermodynamic" path (17) and along d~, 0 (~)=  0. Since 0 is positive 
semidefinite, this is its absolute minimum. Condition (B) is, however, more 
general and the class of maximum likelihood paths ~ can be determined by 
the dissipation balance condition 

H(~, ~) = r - ~t'(~) = 0 (47) 

provided the transversality condition (37) holds. By virtue of the dissipation 
balance condition (47), which provides a numerical equivalence of the 
dissipation functions along the paths of maximum likelihood r A(x0, x) 
ceases to be an explicit function of time along these paths. 

Following Ventsel' and Freidlin, (3) we can show that | O(~) for 
any other path not belonging to the class of maximum likelihood paths ~. 
Along the extreme path, the speed is I[d~i[I = (IIDiJDjS][2-t - llv"l12) 1/2 
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= tlb/(~)[[. Suppose that ~t is obtainable from another curve ~ by a change 
in the time scale, viz., ~ = ~-(t), ~t = ~,(t) �9 Then 

• ~](r2)[;  ? t 

)~i(I;;2'[I;t[[ []b(~t)[[dt-- J'r-l(Tl)('r-l(T2)[[ b(~t),;t]dt= OTIT2(~ ) (48) 
on account of the inequality ax 2 + y 2 / a  >f 2xy for any a > 0. 

In contrast to variational principles of classical mechanics, the extre- 
mum paths satisfy first order differential equations so that only one end 
condition in the variational expression can be specified. The thermody- 
namic path satisfies condition (C) and the problem of specifying the 
endpoint conditions does not arise. If, on the other hand, (C) is not satisfied 
then it will be possible to reach inf O(~) only for T 1 ---> - oo when the final 
state of transition x is specified at time T2.(3)As T 1 --->*-oe, the system will 
reach any neighborhood of the stable stationary state. This was already 
recognized by Onsager and Machlup, who used the initial condition to 
eliminate the exponentially falling solution in the case of Gaussian fluctua- 
tions: "the aged system was certainly at equilibrium some time long ago". (1) 
Physically, this conforms to our intuition that an arbitrary nonequilibrium 
state cannot be realized in a finite time if the system is found in a small 
neighborhood of the stationary state x 0 = 0 where it spends an unlimited 
portion of its time. Also in this case, the time of transit is variable so 
condition (B) applies to these paths of maximum likelihood for the system 
to follow in making the transition from the stationary state to any fixed 
terminal state x in the limit k,l,0. Again the thermodynamic action is not an 
explicit function of time along these paths of maximum likelihood. 

The distinction between the paths of maximum likelihood for the 
growth and decay of fluctuations in the limit k$0 can be seen in terms of 
the different forms that the variational principle (46) assumes. The minimi- 
zation of the OM functional to obtain the most likely path for the decay of 
a nonequilibrium fluctuation is analogous to d'Alembert's principle in 
classical mechanics(9); it makes an independent statement at each instant 
in time during the motion. This is precisely the content of condition (C). 
Alternatively, the minimization of the OM functional to obtain the most 
likely path for the growth of a fluctuation is analogous to Hamilton's 
principle which considers the motion as a whole. However, the specification 
of both end points is incompatible with the first-order differential equation 
for the path of maximum likelihood. This requires letting T 1 ~ - or, which 
ensures that the system will arrive at any neighborhood of the stationary 
state. Only in this case will O(q~) reach a minimum. 
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Since H is not an explicit function of time, the thermodynamic action 
can be written in the separated form 

Ar, r2(x0, x) = W~(x 0 , x) - a (T 2 - T1) (49) 

where the parameter a >/0. W~ is analogous to Hamilton's characteristic 
function in classical mechanics. Paths of maximum likelihood are charac- 
terized by ct = 0 and consequently W 0 satisfies the pair of time-independent 
Hamilton-Jacobi equations: 

-~ DY(0;W o + A,)@jW o + Aj)  - ~ ( x )  = 0 (50) 

1 D 0(~o /wo _ Ai)(~o jwo _ Aj) - ~(Xo) = 0 (51)  

By virtue of the form of the generating function (35) one particular solution 
to Eqs. (50) and (51) is 

A 

W0(x0,x) = S(x)- S(xo) (52) 

Consequently, ~i = ~iS and introducing this into the first of Hamilton's 
equations gives 

. ~ .  . .  A , ^ A 

ep'=t D'JOjS(eP,) + v'(ep,), ~o = xo (53) 

which will be recognized as the equation of motion for absolutely most 
probable path for the regression of a fluctuation. The second of Hamilton's 
equations in (A) is satisfied identically. 

Now, provided the transversality condition (37) holds, there is another 
particular solution to the time-independent Hamilton-Jacobi equations 
(50) and (51), viz., 

~lo(xo ,  x )  = - { S ( x )  - S ( x o )  ) (54) 

According to (44) and (49) we now find ~i = -O~S and introducing this 
into the first of Hamilton's equations we have 

~ / =  -D i j~ js (~ t ) -~ -v i (~ t )  , ~i)T2~- X,t~[--(x~,T2] (55)  

Equation (54) specifies aunique extremal of ~)(~) on the set 

U 
- o o  < T I <  T 2  

Recalling that v~--> - v  i under t--> - t ,  it will be apppreciated that (54) is 
the mirror image in time of the deterministic equation (53) for the abso- 
lutely most probable path. For this reason, we have referred to ~ as the 
"antithermodynamic" path. (17) In the next section, we shall see that this 
path of maximum likelihood, in the limit kS0, is intimately connected with 
the most probable path of exit in any bounded domain containing the 
stationary state. 
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5. THERMODYNAMIC CRITERIA FOR STOCHASTIC EXIT 

Although the deterministic system is asymptotically stable and 
b .  p < 0 on the boundary ~2 of the domain ~2 containing the unique 
stationary state, there will, with probability 1, be trajectories of the system 
which reach the boundary and induce on it a probability distribution. 
Assuming that there exits a unique position on ~2 at which the system 
makes its first exit from f~, we can, following Ventsel' and Freidlin, obtain a 
thermodynamic criterion for the state of exit. 

If the system does not leave ~ on the the interval [T1, T2], then the 
entropy is a function of state, viz., 

S(r - S(q'r,) = fTr20iS~/ dt (56) 

The OM functional can then be written as 

O~,~:(~) = ~ ff2DiA#, / + D ' % S  - v')(+/ + DJkOkS -- vJ)dt 

- 2frT2Ois~tidt 

/> 2{ S(q~r, ) - S(~T2)} (57) 

provided the transversality condition (37) holds. Hence Ov~r2(ep)>1 
2 ( S ( q ~ r ) - S ( q ' T ) )  for any curve ~ that connects the stationary state 
4'r~--0 with an arbitrary nonequilibrium state q'T~----X. If, on the other 
hand, q't exits from f~ at some intermediate time ~- E [T l, T2], it will do so at 
that state x ~ 0~ for which S(x) = maxyeo~S(y ). By virtue of the fact that 
the OM functional is additive and non-negative, we have 

| ~> OT,~(q') f> 2{ S(q'r,) - S(q,~)) (58) 

from which it follows that S(q~s) >1 S(eo~ ) for s < ~-. This means that the 
system does not pass through states in which the entropy is strictly smaller 
than the maximum entropy at the boundary, with probability 1, as k,~0. 

In our formulation, the entropy plays the role of the quasipotential 
introduced by Ventsel' and Freidlin. (3) Thus, the expected exit time is 
related to the minimum entropy change by 

limk log E0(r~) = S(0) - max S(y)  (59) 
k.l ,0 ~ ~ y ~ a~2 

provided there is a unique state on the boundary with maximum entropy. 
The final lap, before reaching the boundary, occurs within a 8 tube 
enclosing the extremal path ~, with probability close to 1, for kS0. Ventsel' 
and Freidlin have pointed out that although this is the most probable mode 
of exit, there are nevertheless infinitely other modes of exit. And although 
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each of these modes has an infinitely smaller probability of occurrence, 
their sum may, however, be greater. 

6. T H E R M O D Y N A M I C  VARIATIONAL PRINCIPLES AND 
EVOLUTIONARY CRITERIA 

As we have already mentioned, in the limit T 1 - ->-  oo, infO(q 0 is 
achieved along the antithermodynamic path. The first integral in (57) 
vanishes and we obtain 

l O _ ~ 2 ( ~ )  = - f f  ~O,S~,/ dt= S(O)- 8(%) >1 o (60) 

where we have used limt_ +_ oo~t = O, which is a consequence of the fact that 

t) = - O,Sr = - DYO,SDj S <~ 0 (61) 

provided the transversality condition (37) holds. 
Inequality (60) attests to the fact that the entropy is a strictly monoton- 

ically decreasing function along the antithermodynamic path. In other 
words, the entropy production (61) is negative semidefinite along e~. The 
integrand in (57) can be written as a power inequality, viz., 

+ ~I' > 1I - g (62) 

which expressed in words states that the rate of energy dissipation must 
prevail over the rate of energy input and its generation in the system. Along 
the antithermodynamic path (62) reduces to 

2~(~ )  - II(q) = - S (~) > 0 (63) 

where we have used the dissipation balance condition (47) for paths of 
maximum likelihood. In the particular case of an isolated (FI ---= 0) system, 
(63) corresponds to the Onsager-Machlup result. O) Note that the dissipa- 
tion balance condition (47) is implicit in their analysis since their starting 
point was the phenomenological equations of irreversible thermodynamics. 

Using the fact that the OM functional semidefinite we obtain the 
power inequality 

r + "I' > I71 + S (64) 

If the trajectory q~t coincides on [T 1, T2] with a trajectory of the thermody- 
namic path 0t, the increment in the OM functional on the entire interval 
vanishes. We then obtain the power balance relation (18) : 

2~(~) 11(~) 6 (~ )  O (65) - = = D OiSOjS >/0 

where the second equality follows from (53) and the transversality condi- 
tion (37). Along 0t, the entropy production is positive semidefinite; the 
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entropy of an unconstrained nonequilibrium process will, in general, be a 
strictly monotonically increasing function of time. Alternatively, if it is 
known that the entropy was a maximum at some distant time in the past, 
then there will be a finite probability to observe states with lower entropy in 
the course of time. The most probable path for the growth of a spontaneous 
fluctuation is, with probability 1, the antithermodynamic path in the limit 
kS0. 

The paths of maximum likelihood for the growth and decay of 
fluctuations can be derived from the constrained thermodynamic variational 
principle of least dissipation of energy (19) : 

~(+) ~ i n f  (66) 

subject to the power balance constraints, (63) and (65), respectively. Let 
be a Lagrange undetermined multiplier; the free variational principles are: 

80 { qb(+) -- 7t[ 2~(+) -- l-I(+) _+ S (+) ]} = 0 (67) 

where the _+ refers to the growth and decay of fluctuations, respectively, 
and the variations are taken with respect to the independent velocities for a 
given configuration. Explicitly we find 

{ (1 - 2?t)Dij+J - ?t( + OiS - Ai) )~+i=  0 (68) 

Since the variations are .arbitrary, we obtain X = 1 in both cases upon 
multiplying through by q,' and using the power balance constraints (63) and 
(65). The free thermodynamic variational principles are 

q5 - II _+ S ~ extremum (69) 

for the most probable paths of the growth and decay of fluctuations, 
respectively. 

The principle of minimum dissipation of energy has an additional 
probabilistic significance. The joint probability density, p(x,  T2;xo, T 0 
= p(x ,  T 2 [ Xo, T1) "poo(Xo), in the limit kS0 is given by the expression 

limZklog p(x ,  7"2; x 0 , T,) = S(x)  + S(xo) - Av, T2(xo ,x) (70) 
kS0 

where the thermodynamic action is given by 

Ar, r:(x0,x ) = inf{ fv'r2[ (I)(+t)+ xI,(~,) -- 1-I(+,)] dt : OT= XO, OV2 = X  } 

(71) 
Integrating the power balance equation (63) on the integral [ -  oo, T2] and 
the power balance equation (65) on the interval [T1, oo] we obtain 

- S (x )  = { : r  - H(g,,) ) d,= 
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and 

respectively. Introducing (72) and (73) into (70) leads to 

l imklogp(x,  T2; Xo, T1) = S(0) - �89 ~,~(x o ,x) (74) 
kS0 

where 

A ~,~(Xo,X ) = inf( f5:r { (I)(r q'(O,)- H(~,,)} dt : ~r, = Xo, ~'r: = x  } 

(75) 

Expressions (73) and (74) show that a complete statistical description is 
afforded by the time integral of the thermodynamic Lagrangian. We shall 
now show that the thermodynamic Lagrangian characterizes the rate of 
decay of statistical correlations between nonequilibrium states that are not 
well separated in time. An expression analogous to (74) has been previously 
derived by Onsager and Machlup, (~) in the case of Gaussian fluctuations 
occurring in an isolated system (H -- 0), using arguments based on symme- 
try in past and future (see also Ref. 20). 

An evolutionary criterion can be derived that is analogous to the 
generalized Boltzmann H theorem. (21) We define the function 

Zr~r2(x0, x) =-- - lim 2k log( p ( x, T2 [ x o , TO /p=( x) } 
k$O 

= AT, r~(x0,x ) + S(x) + S(xo) (76) 

In the thermodynamic limit, kS0, the thermodynamic action coincides with 
the negative of the joint entropy, (~5) as shown by (76). The joint entropy 
accounts for the statistical correlations between nonequilibrium states that 
are not well-separated in time.(15'21) Along the thermodynamic path, Z(x0, 
x) = 2S(x), while along the antithermodynamic path Z(x 0, x) = 2S(x0). 

The total time derivative of Z is 

dTZ -- (I) + ,I, - H + S >1 0 (77) 

In the thermodynamic limit, the thermodynamic Lagrangian ((I) + q, - I-i) 
describes the rate of decay of the statistical correlations between nonequi- 
librium states. From the power inequalities, (62) and (64), we conclude that 
the rate of change of the entropy associated with the decay of the statistical 
correlations is always greater than or equal to the absolute value of the 
entropy production. Moreover, along the thermodynamic path, dvZ = 2S 
>/0, and consequently Z pro+ides a criterion of evolution. In contrast, 
d r Z - - 0  along the antithermodynamic path and E does not provide any 
evolutionary criterion along this path. 
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